GATE XE Syllabus for GATE 2023

GATE XE Syllabus for GATE 2025

GATE XE (Engineering Science) Syllabus 2025 has been released online. GATE is a national level exam and one of the toughest exam to crack in India. This exam is required to get admission into M. Tech &  M.S /Research programs in IITs/NITs & IISc Bangalore. The syllabus for GATE 2025 has been released in official GATE 2024 website and it is listed below.

Before checking the syllabus we need to understand that GATE XE has different sections and students will have options to select few optional papers. Overall Engineering Science (XE) has 7 Optional Sections and 2 compulsory sections(General Aptitude & Engineering Mathematics). The List of Sections are Engineering Mathematics (XE-A), Fluid Mechanics (XE-B), Material Science (XE-C), Solid Mechanics (XE-D), Thermodynamics (XE-E), Polymer Science and Engineering (XE-F), Food Technology (XE-G) & Atmospheric and Ocean Science (XE-H).

GATE Engineering Science (XE) for 2025

XE-A: Engineering Mathematics (Compulsory for all XE Candidates)

Section 1: Linear Algebra
Algebra of real matrices: Determinant, inverse and rank of a matrix; System of linear equations
(conditions for unique solution, no solution and infinite number of solutions); Eigenvalues and
eigenvectors of matrices; Properties of eigenvalues and eigenvectors of symmetric matrices,
diagonalization of matrices; Cayley-Hamilton Theorem.

Section 2: Calculus
Functions of single variable:
Limit, indeterminate forms and L’Hospital’s rule; Continuity and
differentiability; Mean value theorems; Maxima and minima; Taylor’s theorem; Fundamental theorem
and mean value theorem of integral calculus; Evaluation of definite and improper integrals; Applications
of definite integrals to evaluate areas and volumes (rotation of a curve about an axis).
Functions of two variables: Limit, continuity and partial derivatives; Directional derivative; Total
derivative; Maxima, minima and saddle points; Method of Lagrange multipliers; Double integrals
and their applications.
Sequences and series: Convergence of sequences and series; Tests of convergence of series with nonnegative terms (ratio, root and integral tests); Power series; Taylor’s series; Fourier Series of functions
of period 2π.

Section 3: Vector Calculus
Gradient, divergence and curl; Line integrals and Green’s theorem.

Section 4: Complex variables
Complex numbers, Argand plane and polar representation of complex numbers; De Moivre’s theorem;
Analytic functions; Cauchy-Riemann equations.

Section 5: Ordinary Differential Equations
First order equations (linear and nonlinear); Second order linear differential equations with constant
coefficients; Cauchy-Euler equation; Second order linear differential equations with variable coefficients;
Wronskian; Method of variation of parameters; Eigenvalue problem for second order equations with
constant coefficients; Power series solutions for ordinary points.

Section 6: Partial Differential Equations
Classification of second order linear partial differential equations; Method of separation of variables: One
dimensional heat equation and two dimensional Laplace equation.

Section 7: Probability and Statistics

Axioms of probability; Conditional probability; Bayes’ Theorem; Mean, variance and standard
deviation of random variables; Binomial, Poisson and Normal distributions; Correlation and linear
regression.

Section 8: Numerical Methods

Solution of systems of linear equations using LU decomposition, Gauss elimination method; Lagrange
and Newton’s interpolations; Solution of polynomial and transcendental equations by Newton-Raphson
method; Numerical integration by trapezoidal rule and Simpson’s rule; Numerical solutions of first order
differential equations by explicit Euler’s method

XE-B: Fluid Mechanics

SECTION 1: Flow and Fluid Properties
Fluid Properties: Density, viscosity, surface tension, relationship between stress and strain-rate
for Newtonian fluids.
Classification of Flows: Viscous versus inviscid flows, incompressible versus compressible flows,
internal versus external flows, steady versus unsteady flows, laminar versus turbulent flows, 1-D, 2-D
and 3-D flows, Newtonian versus non-Newtonian fluid flow.
Hydrostatics: Buoyancy, manometry, forces on submerged bodies and its stability.

SECTION 2: Kinematics of Fluid Motion
Eulerian and Lagrangian descriptions of fluid motion. Concept of local, convective and material
derivatives. Streamline, streakline, pathline and timeline.

SECTION 3: Integral Analysis for a Control Volume
Reynolds Transport Theorem (RTT) for conservation of mass, linear and angular momentum.

SECTION 4: Differential Analysis
Differential equations of mass and momentum for incompressible flows.
Inviscid flows – Euler equations and viscous flows – Navier-Stokes equations.
Concept of fluid rotation, vorticity, stream function and circulation.
Exact solutions of Navier-Stokes equations for Couette flow and Poiseuille flow, thin film flow.

SECTION 5: Dimensional Analysis
Concept of geometric, kinematic and dynamic similarity.
Buckingham Pi theorem and its applications.
Non-dimensional parameters and their physical significance – Reynolds number, Froude number and
Mach number.

SECTION 6: Internal Flows
Fully developed pipe flow. Empirical relations for laminar and turbulent flows: friction factor, Darcy-Weisbach relation and Moody’s chart. Major and minor losses.

SECTION 7: Bernoulli’s Equation and its Applications, Potential Flows
Bernoulli’s equation: Assumptions and applications.
Flow measurements – Venturi meter, Pitot-static tube and orifice meter.
Elementary potential flows: Velocity potential function.
Uniform flow, source, sink and vortex, and their superposition for flow past simple geometries.

SECTION 8: External Flows
Prandtl boundary layer equations: Concept and assumptions.
Boundary layer characteristics: Boundary layer thickness, displacement thickness and momentum
thickness.
Qualitative idea of boundary layer separation, streamlined and bluff bodies, and drag and lift forces

XE-C: Material Science

1: Classification and Structure of Materials
Classification of materials: metals, ceramics, polymers and composites.
Nature of bonding in materials: metallic, ionic, covalent and mixed bonding; structure of materials:
fundamentals of crystallography, symmetry operations, crystal systems, Bravais lattices, unit cells,
primitive cells, crystallographic planes and directions; structures of metals, ceramics, polymers,
amorphous materials and glasses.
Defects in crystalline materials: 0-D, 1-D and 2-D defects; vacancies, interstitials, solid solutions in
metals and ceramics, Frenkel and Schottky defects; dislocations; grain boundaries, twins, stacking
faults; surfaces and interfaces.

2: Thermodynamics, Kinetics and Phase Transformations
Extensive and intensive thermodynamic properties, laws of thermodynamics, phase equilibria, phase
rule, phase diagrams (unary and binary), basic electrochemistry.
Reaction kinetics, fundamentals of diffusion, Fick’s laws, their solutions and applications.
Solidification of pure metals and alloys, nucleation and growth, diffusional solid-state phase
transformations (precipitation and eutectoid), martensitic transformation.

3: Properties and Applications of Materials
Mechanical properties of metals, ceramics, polymers and composites at room temperature; stressstrain response (elastic, anelastic and plastic deformation).
Electronic properties: free electron theory, Fermi energy, density of states, elements of band theory,
semiconductors, Hall effect, dielectric behaviour, piezo- and ferro-electric behaviour.
Magnetic properties: Origin of magnetism in materials, para-, dia-, ferro- and ferri-magnetism.
Thermal properties: Specific heat, heat conduction, thermal diffusivity, thermal expansion, and
thermoelectricity.
Optical properties: Refractive index, absorption and transmission of electromagnetic radiation.
Examples of materials exhibiting the above properties, and their typical/common applications.

4: Characterization and Measurements of Properties
X-ray diffraction; spectroscopic techniques such as UV-Vis, IR and Raman; optical microscopy, electron
microscopy, composition analysis in electron microscopes.
Tensile test, hardness measurement.
Electrical conductivity, carrier mobility and concentrations.
Thermal analysis techniques: thermogravimetry and calorimetry.

5: Processing of Materials
Heat treatment of ferrous and aluminium alloys; preparation of ceramic powders, sintering; thin film
deposition: evaporation and sputtering techniques, and chemical vapour deposition, thin film growth
phenomena.

6: Degradation of Materials
Corrosion and its prevention; embrittlement of metals; polymer degradation.

XE-D: Solid Mechanics

Section 1: Mechanics of rigid bodies
Equivalent force systems; free-body diagrams; equilibrium equations; analysis of determinate trusses
and frames; friction; principle of minimum potential energy; particle kinematics and dynamics; dynamics
of rigid bodies under planar motion; law of conservation of energy; law of conservation of momentum.

Section 2: Mechanics of deformable bodies
Stresses and strains; transformation of stresses and strains, principal stresses and strains; Mohr’s circle
for plane stress and plane strain; generalized Hooke’s Law; elastic constants; thermal stresses; theories
of failure.
Axial force, shear force and bending moment diagrams; axial, shear and bending stresses; combined
stresses; deflection (for symmetric bending); torsion in circular shafts; thin walled pressure vessels;
energy methods (Castigliano’s Theorems); Euler buckling.

Section 3: Vibrations
Free vibration of undamped single degree of freedom systems.

XE-E: Thermodynamics

Section 1: Basic Concepts
Continuum and macroscopic approach; thermodynamic systems (closed and open); thermodynamic
properties and equilibrium; state of a system, state postulate for simple compressible substances, state
diagrams, paths and processes on state diagrams; concepts of heat and work, different modes of work;
zeroth law of thermodynamics; concept of temperature.
Section 2: First Law of Thermodynamics
Concept of energy and various forms of energy; internal energy, enthalpy; specific heats; first law
applied to elementary processes, closed systems and control volumes, steady and unsteady flow
analysis.
Section 3: Second Law of Thermodynamics
Limitations of the first law of thermodynamics, concepts of heat engines and heat pumps/refrigerators,
Kelvin-Planck and Clausius statements and their equivalence; reversible and irreversible processes;
Carnot cycle and Carnot principles/theorems; thermodynamic temperature scale; Clausius inequality
and concept of entropy; microscopic interpretation of entropy, the principle of increase of entropy, T-s
diagrams; second law analysis of control volume; availability and irreversibility; third law of
thermodynamics.
Section 4: Properties of Pure Substances
Thermodynamic properties of pure substances in solid, liquid and vapor phases; P-v-T behaviour of
simple compressible substances, phase rule, thermodynamic property tables and charts, ideal and real
gases, ideal gas equation of state and van der Waals equation of state; law of corresponding states,
compressibility factor and generalized compressibility chart.
Section 5: Thermodynamic Relations
T-ds relations, Helmholtz and Gibbs functions, Gibbs relations, Maxwell relations, Joule-Thomson
coefficient, coefficient of volume expansion, adiabatic and isothermal compressibilities, Clapeyron and
Clapeyron-Clausius equations.
Section 6: Thermodynamic Cycles
Carnot vapor cycle, ideal Rankine cycle, Rankine reheat cycle, air-standard Otto cycle, air-standard
Diesel cycle, air-standard Brayton cycle, vapor-compression refrigeration cycle.
Section 7: Ideal Gas Mixtures
Dalton’s and Amagat’s laws, properties of ideal gas mixtures, air-water vapor mixtures and simple
thermodynamic processes involving them; specific and relative humidities, dew point and
wet bulb temperature, adiabatic saturation temperature, psychrometric chart.

XE-F: Polymer Science and Engineering

Section 1: Chemistry of high polymers
Monomers, functionality, degree of polymerizations, classification of polymers, glass transition, melting
transition, criteria for rubberiness, polymerization methods: addition and condensation; their kinetics,
metallocene polymers and other newer methods of polymerization, copolymerization, monomer
reactivity ratios and its significance, kinetics, different copolymers, random, alternating, azeotropic
copolymerization, block and graft copolymers, techniques for polymerization-bulk, solution, suspension,
emulsion. Concept of intermolecular order (morphology) – amorphous, crystalline, orientation states.
Factor affecting crystallinity. Crystalline transition. Effect of morphology on polymer properties.

Section 2: Polymer Characterization
Solubility and swelling, Concept of molecular weight distribution and its significance, concept of average
molecular weight, determination of number average, weight average, viscosity average and Z-average
molecular weights, polymer crystallinity, analysis of polymers using IR, XRD, thermal (DSC, DMTA,
TGA), microscopic (optical and electronic) techniques, Molecular wt. distribution: Broad and Narrow,
GPC, mooney viscosity.

Section 3: Synthesis, manufacturing and properties
Commodity and general purpose thermoplastics: PE, PP, PS, PVC, Polyesters, Acrylic, PU polymers.
Engineering Plastics: Nylon, PC, PBT, PSU, PPO, ABS, Fluoropolymers Thermosetting polymers:
Polyurethane, PF, MF, UF, Epoxy, Unsaturated polyester, Alkyds. Natural and synthetic rubbers:
Recovery of NR hydrocarbon from latex; SBR, Nitrile, CR, CSM, EPDM, IIR, BR, Silicone, TPE,
Speciality plastics: PEK, PEEK, PPS, PSU, PES etc. Biopolymers such as PLA, PHA/PHB.

Section 4: Polymer blends and composites
Difference between blends and composites, their significance, choice of polymers for blending, blend
miscibility-miscible and immiscible blends, thermodynamics, phase morphology, polymer alloys,
polymer eutectics, plastic-plastic, rubber-plastic and rubber-rubber blends, FRP, particulate, long and
short fibre reinforced composites. Polymer reinforcement, reinforcing fibres – natural and synthetic,
base polymer for reinforcement (unsaturated polyester), ingredients / recipes for reinforced polymer
composite.

Section 5: Polymer Technology
Polymer compounding-need and significance, different compounding ingredients for rubber and plastics
(Antioxidants, Light stabilizers, UV stabilizers, Lubricants, Processing aids, Impact modifiers, Flame
retardant, antistatic agents. PVC stabilizers and Plasticizers) and their function, use of carbon black,
polymer mixing equipments, cross-linking and vulcanization, vulcanization kinetics.

Section 6: Polymer rheology
Flow of Newtonian and non-Newtonian fluids, different flow equations, dependence of shear modulus
on temperature, molecular/segmental deformations at different zones and transitions. Measurements
of rheological parameters by capillary rotating, parallel plate, cone-plate rheometer. Visco-elasticitycreep and stress relaxations, mechanical models, control of rheological characteristics through
compounding, rubber curing in parallel plate viscometer, ODR and MDR.

Section 7: Polymer processing
Compression molding, transfer molding, injection molding, blow molding, reaction injection molding,
filament winding, SMC, BMC, DMC, extrusion, pultrusion, calendaring, rotational molding,
thermoforming, powder coating, rubber processing in two-roll mill, internal mixer, Twin screw extruder.

Section 8: Polymer testing
Mechanical-static and dynamic tensile, flexural, compressive, abrasion, endurance, fatigue, hardness,
tear, resilience, impact, toughness. Conductivity-thermal and electrical, dielectric constant, dissipation
factor, power factor, electric resistance, surface resistivity, volume resistivity, swelling, ageing
resistance, environmental stress cracking resistance, limiting oxygen index. Heat deflection
temperature –Vicat softening temperature, Brittleness temperature, Glass transition temperature, Coefficient of thermal expansion, Shrinkage, Flammability, dielectric constant, dissipation factor, power
factor, Optical Properties – Refractive Index, Luminous Transmittance and Haze, Melt flow index

Section 9: Polymer Recycling and Waste management
Polymer waste, and its impact on environment, Sources, Identification and Separation techniques,
recycling classification, recycling of thermoplastics, thermosets and rubbers, applications of recycled
materials. Life cycle assessment of polymer products (case studies like PET bottles, packaging bags)

XE-G: Food Technology

Section 1: Food Chemistry and Nutrition
Carbohydrates: structure and functional properties of mono-, oligo-, & poly- saccharides including
starch, cellulose, pectic substances and dietary fibre, gelatinization and retrogradation of starch.
Proteins: classification and structure of proteins in food, biochemical changes in post mortem and
tenderization of muscles. Lipids: classification and structure of lipids, rancidity, polymerization and
polymorphism. Pigments: carotenoids, chlorophylls, anthocyanins, tannins and myoglobin. Food
flavours: terpenes, esters, aldehydes, ketones and quinines. Enzymes: specificity, simple and inhibition
kinetics, coenzymes, enzymatic and non- enzymatic browning. Nutrition: balanced diet, essential amino
acids and essential fatty acids, protein efficiency ratio, water soluble and fat soluble vitamins, role of
minerals in nutrition, co-factors, anti-nutrients, nutraceuticals, nutrient deficiency diseases. Chemical
and biochemical changes: changes occur in foods during different processing.

Section 2: Food Microbiology
Characteristics of microorganisms: morphology of bacteria, yeast, mold and actinomycetes, spores and
vegetative cells, gram-staining. Microbial growt h: growth and death kinetics, serial dilution technique.
Food spoilage: spoilage microorganisms in different food products including milk, fish, meat, egg,
cereals and their products. Toxins from microbes: pathogens and non-pathogens including
Staphylococcus, Salmonella, Shigella, Escherichia, Bacillus, Clostridium, and Aspergillus genera.
Fermented foods and beverages: curd, yoghurt, cheese, pickles, soya-sauce, sauerkraut, idli, dosa,
vinegar, alcoholic beverages and sausage.

Section 3: Food Products Technology
Processing principles: thermal processing, chilling, freezing, dehydration, addition of preservatives and
food additives, irradiation, fermentation, hurdle technology, intermediate moisture foods. Food pack
aging and storage: packaging materials, aseptic packaging, controlled and modified atmosphere
storage. Cereal processing and products: milling of rice, wheat, and maize, parboiling of paddy, bread,
biscuits, extruded products and ready to eat breakfast cereals. Oil processing: expelling, solvent
extraction, refining and hydrogenation. Fruits and vegetables p processing: extraction, clarification,
concentration and packaging of fruit juice, jam, jelly, marmalade, squash, candies, tomato sauce,
ketchup, and puree, potato chips, pickles. Plantation crops processing and products: tea, coffee, cocoa,
spice, extraction of essential oils and oleoresins from spices. Milk and milk products processing:
pasteurization and sterilization, cream, butter, ghee, ice- cream, cheese and milk powder. Processing
of animal products: drying, canning, and freezing of fish and meat; production of egg powder. Waste
utilization: pectin from fruit wastes, uses of by-products from rice milling. Food standards and quality
maintenance: FPO, PFA, A-Mark, ISI, HACCP, food plant sanitation and cleaning in place (CIP).

Section 4: Food Engineering
Mass and energy balance; Momentum transfer: Flow rate and pressure drop relationships for
Newtonian fluids flowing through pipe, Reynolds number. Heat transfer: heat transfer by conduction,
convection, radiation, heat exchangers. Mass transfer: molecular diffusion and Flick’s law, conduction
and convective mass transfer, permeability through single and multilayer
films. Mechanical operations: size reduction of solids, high pressure homogenization, filtration,
centrifugation, settling, sieving, mixing & agitation of liquid. Thermal operations: thermal sterilization,
evaporation of liquid foods, hot air drying of solids, spray and freeze-drying, freezing and crystallization.
Mass transfer operations: psychometric, humidification and dehumidification operations.

XE-H: Atmospheric & Ocean Science

Section A: Atmospheric Science
Vertical Structure and Composition of the Atmosphere; Blackbody Radiation and Radiation Balance;
Modes of Heat Transfer in the Atmosphere; Greenhouse Effect; Cloud Types; Laws of
Thermodynamics; Gas Laws; Hydrostatic Equation; Clausius Clapeyron Equation; Adiabatic
Processes, Humidity in the Atmosphere, Atmospheric Stability; Weather and Climate.

Navier-Stokes and Continuity Equations; Compressible and Incompressible Fluids; Pressure Gradient,
Centripetal, Centrifugal and Coriolis Forces; Geostrophic, Gradient and Cyclostrophic Balances;
Circulations and Vorticity, General Circulation of the Atmosphere. Broad Features of Indian Monsoons,
Monsoon Depressions; Tropical Convergence Zones; Tropical Cyclones.

Section B: Ocean Sciences
Vertical Profiles of Temperature and Salinity; Stability and Double Diffusion; Equation of State,
Equations for Conservation of Mass, Momentum, Heat and Salt; Inertial Currents; Geostrophic Motion;
Air-Sea Surface Fluxes; Wind-driven Circulation, Ekman and Sverdrup Transports; Storm Surges,
Tides, Tsunamis and Wind Waves; Eddies and Gyres; Eastern and Western Boundary Currents,
Equatorial Currents, Indian Ocean Current Systems; Thermohaline Circulation.
Chemical Properties of Seawater, Major and Minor Elements, Ocean Acidification, Biochemical Cycling
of Nutrients, Trace Metals and Organic Matter. Biological Pump; Primary and Secondary Biological
Productivity; Air-sea Exchange of Biogenic Dissolved Gases; Marine Ecology.

GATE Engineering Science Pattern

Now, from the above syllabus student needs to select 2 optional paper along with 2 compulsory paper as mentioned below.

  1. General Aptitude-15 Marks(Compulsory)
  2. Engineering Mathematics-15 Marks (Compulsory)
  3.  Any one section from XE-B XE-H – 35 Marks
  4. Another one section from XE-B to XE-H – 35 Marks
Total Marks:100 (180 Minutes)

Know Everything about GATE XE

Go through this video to Know Everything about GATE XE

Frequently Asked Question on GATE Engineering Science (XE)

1. Is GATE Engineering Science(XE) Exam very Tough?

GATE Exam is the one of the most competitive exam in Technical field. With right strategy and proper preparation it can be cracked easily. GATE Exam online or offline Coaching will help the students to plan their strategy and prepare with right content.

2. How Endurance Engineering Academy Help us in Preparing for GATE 2023 (XE)?

Endurance Engineering have wide variety of online & offline courses which suits different students need. Courses such as GATE(Online) ALL IN ONE, GATE Classroom Coaching in Chennai, GATE XE TEST SERIES & GATE XE QUESTION BANK are launched from the team of experts.